119 research outputs found

    Compression via Compressive Sensing : A Low-Power Framework for the Telemonitoring of Multi-Channel Physiological Signals

    Full text link
    Telehealth and wearable equipment can deliver personal healthcare and necessary treatment remotely. One major challenge is transmitting large amount of biosignals through wireless networks. The limited battery life calls for low-power data compressors. Compressive Sensing (CS) has proved to be a low-power compressor. In this study, we apply CS on the compression of multichannel biosignals. We firstly develop an efficient CS algorithm from the Block Sparse Bayesian Learning (BSBL) framework. It is based on a combination of the block sparse model and multiple measurement vector model. Experiments on real-life Fetal ECGs showed that the proposed algorithm has high fidelity and efficiency. Implemented in hardware, the proposed algorithm was compared to a Discrete Wavelet Transform (DWT) based algorithm, verifying the proposed one has low power consumption and occupies less computational resources.Comment: 2013 International Workshop on Biomedical and Health Informatic

    Second-order statistics analysis and comparison between arithmetic and geometric average fusion: Application to multi-sensor target tracking

    Get PDF
    Two fundamental approaches to information averaging are based on linear and logarithmic combination, yielding the arithmetic average (AA) and geometric average (GA) of the fusing data, respectively. In the context of multisensor target tracking, the two most common formats of data to be fused are random variables and probability density functions, namely v-fusion and f-fusion, respectively. In this work, we analyze and compare the second-order statistics (including variance and mean square error) of AA and GA in terms of both v-fusion and f-fusion. The case of weighted Gaussian mixtures representing multitarget densities in the presence of false alarms and missed detections (whose weight sums are not necessarily unit) is also considered, the result of which turns out to be significantly different from that of a single target. In addition to exact derivation, exemplifying analyses and illustrations are also provided.This work was supported in part by the Marie Skłodowska-Curie Individual Fellowship under Grant 709267, in part by Shaanxi Natural Fund under Grant 2018MJ6048, in part by the Northwestern Polytechnical University, and in part by Junta Castilla y León, Consejería de Educación and FEDER funds under project SA267P18

    A Robust Multi-Sensor PHD Filter Based on Multi-Sensor Measurement Clustering

    Get PDF
    [EN] This letter presents a novel multi-sensor probability hypothesis density (PHD) filter for multi-target tracking by means of multiple or even massive sensors that are linked by a fusion center or by a peer-to-peer network. As a challenge, we find there is little known about the statistical properties of the sensors in terms of their measurement noise, clutter, target detection probability, and even potential cross-correlation. Our approach converts the collection of the measurements of different sensors to a set of proxy and homologous measurements. These synthetic measurements overcome the problems of false and missing data and of unknown statistics, and facilitate linear PHD updating that amounts to the standard PHD filtering with no false and missing data. Simulation has demonstrated the advantages and limitations of our approach in comparison with the cutting-edge multi-sensor/distributed PHD filters

    Dual-Channel Particle Filter Based Track-Before-Detect for Monopulse Radar

    Get PDF
    A particle filter based track-before-detect (PF-TBD) algorithm is proposed for the monopulse high pulse repetition frequency (PRF) pulse Doppler radar. The actual measurement model is adopted, in which the range is highly ambiguous and the sum and difference channels exist in parallel. A quantization method is used to approximate the point spread function to reduce the computation load. The detection decisions of the PF-TBD are fed to a binary integrator to further improve the detection performance. Simulation results show that the proposed algorithm can detect and track the low SNR target efficiently. The detection performance is improved significantly for both the single frame and the multiframe detection compared with the classical detector. A performance comparison with the PF-TBD using sum channel only is also supplied

    Multi-EAP: extended EAP for multi-estimate extraction for the SMC-PHD filter

    Get PDF
    The ability to extract state-estimates for each target of a multi-target posterior, referred to as multi-estimate extraction (MEE), is an essential requirement for a multi-target filter, whose key performance assessments are based on accuracy, computational efficiency and reliability. The probability hypothesis density (PHD) filter, implemented by the sequential Monte Carlo approach, affords a computationally efficient solution to general multi-target filtering for a time-varying number of targets, but leaves no clue for optimal MEE. In this paper, new data association techniques are proposed to distinguish real measurements of targets from clutter, as well as to associate particles with measurements. The MEE problem is then formulated as a family of parallel singleestimate extraction problems, facilitating the use of the classic expected a posteriori (EAP) estimator, namely the multi-EAP (MEAP) estimator. The resulting MEAP estimator is free of iterative clustering computation, computes quickly and yields accurate and reliable estimates. Typical simulation scenarios are employed to demonstrate the superiority of the MEAP estimator over existing methods in terms of faster processing speed and better estimation accurac
    • …
    corecore